
Chapter 16

Discrepancy and Derandomization
By Sariel Har-Peled, March 19, 2024①

“Shortly after the celebration of the four thousandth anniversary of the opening of space, Angary J. Gustible discovered
Gustible’s planet. The discovery turned out to be a tragic mistake.
Gustible’s planet was inhabited by highly intelligent life forms. They had moderate telepathic powers. They immediately mind-
read Angary J. Gustible’s entire mind and life history, and embarrassed him very deeply by making up an opera concerning
his recent divorce.”

Gustible’s Planet, Cordwainer Smith

16.1. Discrepancy

Consider a set system (X,R), where n = |X|, and R ⊆ 2X. A natural task is to partition X into two sets S ,T ,
such that for any range r ∈ R, we have that χ(r) =

∣∣∣|S ∩ r| − |T ∩ r|
∣∣∣ is minimized. In a perfect partition, we

would have that χ(r) = 0 – the two sets S ,T partition every range perfectly in half. A natural way to do so, is
to consider this as a coloring problem – an element of X is colored by +1 if it is in S , and −1 if it is in T .

Definition 16.1.1. Consider a set system S = (X,R), and let χ : X → {−1,+1} be a function (i.e., a coloring).
The discrepancy of r ∈ R is χ(r) = |

∑
x∈r χ(x)|. The discrepancy of χ is the maximum discrepancy over all the

ranges – that is
disc(χ) = max

r∈R
χ(r).

The discrepancy of S is
disc(S) = min

χ:X→{−1,+1}
disc(χ).

Bounding the discrepancy of a set system is quite important, as it provides a way to shrink the size of
the set system, while introducing small error. Computing the discrepancy of a set system is generally quite
challenging. A rather decent bound follows by using random coloring.

Definition 16.1.2. For a vector v = (v1, . . . , vn) ∈ Rn, ∥v∥∞ = maxi |vi|.

For technical reasons, it is easy to think about the set system as an incidence matrix.

Definition 16.1.3. For a m × n a binary matrix M (i.e., each entry is either 0 or 1), consider a vector b ∈
{−1,+1}n. The discrepancy of b is ∥Mb∥∞.

Theorem 16.1.4. Let M be an n × n binary matrix (i.e., each entry is either 0 or 1), then there always exists a
vector b ∈ {−1,+1}n, such that ∥Mb∥∞ ≤ 4

√
n log n. Specifically, a random coloring provides such a coloring

with high probability.

①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

Proof: Let v = (v1, . . . , vn) be a row of M. Chose a random b = (b1, . . . , bn) ∈ {−1,+1}n. Let i1, . . . , iτ be the
indices such that vi j = 1, and let

Y = ⟨v,b⟩ =
n∑

i=1

vibi =

τ∑
j=1

vi jbi j =

τ∑
j=1

bi j .

As such Y is the sum of m independent random variables that accept values in {−1,+1}. Clearly,

E[Y] = E
[
⟨v,b⟩

]
= E

[∑
i

vibi

]
=

∑
i

E[vibi] =
∑

i

vi E[bi] = 0.

By Chernoff inequality and the symmetry of Y , we have that, for ∆ = 4
√

n ln m, it holds

P
[
|Y | ≥ ∆

]
= 2P

[
⟨v,b⟩ ≥ ∆

]
= 2P

[τ∑
j=1

bi j ≥ ∆
]
≤ 2 exp

(
−
∆2

2τ

)
= 2 exp

(
−8

n ln m
τ

)
≤

2
m8 ,

since τ ≤ n. In words, the probability that any entry in Mb exceeds (in absolute values) 4
√

n ln, is smaller than
2/m7. Thus, with probability at least 1− 2/m7, all the entries of Mb have absolute value smaller than 4

√
n ln m.

In particular, there exists a vector b ∈ {−1,+1}n such that ∥Mb ∥∞ ≤ 4
√

n ln m. ■

We might spend more time on discrepancy later on – it is a fascinating topic, well worth its own course.

16.2. The Method of Conditional Probabilities
In previous lectures, we encountered the following problem.

Problem 16.2.1 (Set Balancing/Discrepancy). Given a binary matrix M of size n × n, find a vector v ∈
{−1,+1}n, such that ∥Mv∥∞ is minimized.

Using random assignment and the Chernoff inequality, we showed that there exists v, such that ∥Mv∥∞ ≤
4
√

n ln n. Can we derandomize this algorithm? Namely, can we come up with an efficient deterministic algo-
rithm that has low discrepancy?

To derandomize our algorithm, construct a computation tree of depth n, where in the ith level we expose
the ith coordinate of v. This tree T has depth n. The root represents all possible random choices, while a
node at depth i, represents all computations when the first i bits are fixed. For a node v ∈ T , let P(v) be the
probability that a random computation starting from v succeeds – here randomly assigning the remaining bits
can be interpreted as a random walk down the tree to a leaf.

Formally, the algorithm is successful if ends up with a vector v, such that ∥Mv∥∞ ≤ 4
√

n ln n.
Let vl and vr be the two children of v. Clearly, P(v) = (P(vl) + P(vr))/2. In particular, max(P(vl), P(vr)) ≥

P(v). Thus, if we could compute P(·) quickly (and deterministically), then we could derandomize the algorithm.
Let C+m be the bad event that rm · v > 4

√
n log n, where rm is the mth row of M. Similarly, C−m is the bad

event that rm · v < −4
√

n log n, and let Cm = C+m ∪C−m. Consider the probability, P
[
C+m

∣∣∣ v1, . . . , vk

]
(namely, the

first k coordinates of v are specified). Let rm = (r1, . . . , rn). We have that

P
[
C+m

∣∣∣ v1, . . . , vk
]
= P

[n∑
i=k+1

viri > 4
√

n log n −
k∑

i=1

viri

]
= P

[∑
i≥k+1,ri,0

viri > L
]
= P

[∑
i≥k+1,ri=1

vi > L
]
,

where L = 4
√

n log n −
∑k

i=1 viri is a known quantity (since v1, . . . , vk are known). Let V =
∑

i≥k+1,ri=1 1. We
have,

P
[
C+m

∣∣∣ v1, . . . , vk

]
= P

[∑
i≥k+1
αi=1

(vi + 1) > L + V
]
= P

[∑
i≥k+1
αi=1

vi + 1
2
>

L + V
2

]
,

2

The last quantity is the probability that in V flips of a fair 0/1 coin one gets more than (L + V)/2 heads. Thus,

P+m = P
[
C+m

∣∣∣ v1, . . . , vk

]
=

V∑
i=⌈(L+V)/2⌉

(
V
i

)
1
2n =

1
2n

V∑
i=⌈(L+V)/2⌉

(
V
i

)
.

This implies, that we can compute P+m in polynomial time! Indeed, we are adding V ≤ n numbers, each one of
them is a binomial coefficient that has polynomial size representation in n, and can be computed in polynomial
time (why?). One can define in similar fashion P−m, and let Pm = P+m + P−m. Clearly, Pm can be computed in
polynomial time, by applying a similar argument to the computation of P−m = P

[
C−m

∣∣∣ v1, . . . , vk

]
.

For a node v ∈ T , let vv denote the portion of v that was fixed when traversing from the root of T to v. Let
P(v) =

∑n
m=1 P

[
Cm

∣∣∣ vv

]
. By the above discussion P(v) can be computed in polynomial time. Furthermore, we

know, by the previous result on discrepancy that P(r) < 1 (that was the bound used to show that there exist a
good assignment).

As before, for any v ∈ T , we have P(v) ≥ min(P(vl), P(vr)). Thus, we have a polynomial deterministic
algorithm for computing a set balancing with discrepancy smaller than 4

√
n log n. Indeed, set v = root(T).

And start traversing down the tree. At each stage, compute P(vl) and P(vr) (in polynomial time), and set v to
the child with lower value of P(·). Clearly, after n steps, we reach a leaf, that corresponds to a vector v′ such
that ∥Av′∥∞ ≤ 4

√
n log n.

Theorem 16.2.2. Using the method of conditional probabilities, one can compute in polynomial time in n, a
vector v ∈ {−1, 1}n, such that ∥Av∥∞ ≤ 4

√
n log n.

Note, that this method might fail to find the best assignment.

16.3. Bibliographical Notes
There is a lot of nice work on discrepancy in geometric settings. See the books [c-dmr-01, Mat99].

16.4. From previous lectures

Theorem 16.4.1. Let X1, . . . , Xn be n independent random variables, such that P[Xi = 1] = P[Xi = −1] = 1
2 ,

for i = 1, . . . , n. Let Y =
∑n

i=1 Xi. Then, for any ∆ > 0, we have

P
[
Y ≥ ∆

]
≤ exp

(
−∆2/2n

)
.

References
[Mat99] J. Matoušek. Geometric Discrepancy. Vol. 18. Algorithms and Combinatorics. Springer, 1999.

3

http://dx.doi.org/10.1007/978-3-642-03942-3

	Discrepancy and Derandomization
	Discrepancy
	The Method of Conditional Probabilities
	Bibliographical Notes
	From previous lectures

