Chapter 16

Discrepancy and Derandomization

By Sariel Har-Peled, March 19, 2024%

“Shortly after the celebration of the four thousandth anniversary of the opening of space, Angary J. Gustible discovered
Gustible’s planet. The discovery turned out to be a tragic mistake.

Gustible’s planet was inhabited by highly intelligent life forms. They had moderate telepathic powers. They immediately mind-
read Angary J. Gustible’s entire mind and life history, and embarrassed him very deeply by making up an opera concerning
his recent divorce.”

Gustible’s Planet, Cordwainer Smith

16.1. Discrepancy

Consider a set system (X, R), where n = |X|, and R C 2X. A natural task is to partition X into two sets S, T,
such that for any range r € R, we have that y(r) = ||S Nnr|—|TnN r|| is minimized. In a perfect partition, we
would have that y(r) = 0 — the two sets S, T partition every range perfectly in half. A natural way to do so, is
to consider this as a coloring problem — an element of X is colored by +1 if itisin S, and —1 ifitisin 7.

Definition 16.1.1. Consider a set system S = (X, R), and let y : X — {—1,+1} be a function (i.e., a coloring).
The discrepancy of r € R is y(r) = |Y o ¥(x)|. The discrepancy of y is the maximum discrepancy over all the
ranges — that is

disc(y) = max y(r).
reR
The discrepancy of S is
disc(S) = X LT}I_III’H} disc(y).

Bounding the discrepancy of a set system is quite important, as it provides a way to shrink the size of
the set system, while introducing small error. Computing the discrepancy of a set system is generally quite
challenging. A rather decent bound follows by using random coloring.

Definition 16.1.2. For a vector v = (vq,...,v,) € R", ||v|l, = max; |[v;.

For technical reasons, it is easy to think about the set system as an incidence matrix.

Definition 16.1.3. For a m X n a binary matrix M (i.e., each entry is either 0 or 1), consider a vector b €
{—1,+1}". The discrepancy of b is ||Mb||,.

Theorem 16.1.4. Let M be an n X n binary matrix (i.e., each entry is either 0 or 1), then there always exists a
vector b € {—1,+1}", such that ||Mb||, < 4+/nlogn. Specifically, a random coloring provides such a coloring
with high probability.
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Proof: Letv = (vy,...,v,) be arow of M. Chose a random b = (by,...,b,) € {—1,+1}". Letiy,...,i, be the
indices such that vi; =1, and let

n

Y = (v, b)—Zv-b-—Z Zbl]

i=1 j=1

As such Y is the sum of m independent random variables that accept values in {—1, +1}. Clearly,
E[Y] = E[(v,b)] = E| ) \vibs] = ) | Elvib] = ) viElbi] = 0.

By Chernoff inequality and the symmetry of Y, we have that, for A = 4 VnInm, it holds

A? 1 2
P[|Y] > A] = 2 P[(v,b) > A] 21@[219 > A] < Zexp(——) 2exp(—8" nm) <=,
‘= 2 T m
since T < n. In words, the probability that any entry in Mb exceeds (in absolute values) 4 yr In, is smaller than
2/m’. Thus, with probability at least 1 —2/m’, all the entries of Mb have absolute value smaller than 4 Vn Inm.

In particular, there exists a vector b € {—1, +1}" such that || Mb ||, < 4 VnInm. [ |

We might spend more time on discrepancy later on — it is a fascinating topic, well worth its own course.

16.2. The Method of Conditional Probabilities

In previous lectures, we encountered the following problem.

Problem 16.2.1 (Set Balancing/Discrepancy). Given a binary matrix M of size n X n, find a vector v €
{—1, +1}", such that ||[Mv]|., is minimized.

Using random assignment and the Chernoff inequality, we showed that there exists v, such that ||[Mv||, <
4 VnlInn. Can we derandomize this algorithm? Namely, can we come up with an efficient deterministic algo-
rithm that has low discrepancy?

To derandomize our algorithm, construct a computation tree of depth n, where in the ith level we expose
the ith coordinate of v. This tree 7" has depth n. The root represents all possible random choices, while a
node at depth i, represents all computations when the first i bits are fixed. For a node v € T, let P(v) be the
probability that a random computation starting from v succeeds — here randomly assigning the remaining bits
can be interpreted as a random walk down the tree to a leaf.

Formally, the algorithm is successful if ends up with a vector v, such that [[Mv]||, < 4 VrInn.

Let v; and v, be the two children of v. Clearly, P(v) = (P(v;) + P(v,))/2. In particular, max(P(v;), P(v,)) >
P(v). Thus, if we could compute P(-) quickly (and deterministically), then we could derandomize the algorithm.

Let C;, be the bad event thatr,, - v > 4 y/nlogn, where r,, is the mth row of M. Similarly, C,, is the bad

event thatr,, - v < —4 /nlogn, and let C,, = C;; U C,. Consider the probability, IP[ o |V1, e, Vk] (namely, the
first k coordinates of v are speciﬁed) Letr, = (r1,.. r,,) ‘We have that
IP’[C;|VI,...,V] [Zv,r,>4\/nlogn—2v,r, = Z V,-r,->L]:IED[ Z v,->L],
i=k+1 i>k+1,r;#0 i>k+1,r;=1

where L = 4+/nlogn — 21:1 v;r; 1s a known quantity (smce Vi,...,Viare known). Let V = 3.,.,,-, 1. We
have,

]P[C,;|v1,...,vk]:P[Z(v,-+1)>L+V]:p[ vitl LV
5] @



The last quantity is the probability that in V flips of a fair 0/1 coin one gets more than (L + V)/2 heads. Thus,

v \%
reciivenl= 3 (aek > ()
i=[(L+V)/2]

i=[(L+V)/2]

This implies, that we can compute P;, in polynomial time! Indeed, we are adding V < n numbers, each one of
them is a binomial coefficient that has polynomial size representation in 7, and can be computed in polynomial
time (why?). One can define in similar fashion P,, and let P,, = P, + P,. Clearly, P,, can be computed in
polynomial time, by applying a similar argument to the computation of P, = ]P[C,; | Viseoos Vi ]

For anode v € T, let v, denote the portion of v that was fixed when traversing from the root of 7 to v. Let
P(v)=3"_, ]P[Cm Vv]. By the above discussion P(v) can be computed in polynomial time. Furthermore, we
know, by the previous result on discrepancy that P(r) < 1 (that was the bound used to show that there exist a
good assignment).

As before, for any v € T, we have P(v) > min(P(v;), P(v,)). Thus, we have a polynomial deterministic
algorithm for computing a set balancing with discrepancy smaller than 4 y/nlogn. Indeed, set v = root(T).
And start traversing down the tree. At each stage, compute P(v;) and P(v,) (in polynomial time), and set v to
the child with lower value of P(-). Clearly, after n steps, we reach a leaf, that corresponds to a vector v’ such
that ||AV'||, < 4+/nlogn.

Theorem 16.2.2. Using the method of conditional probabilities, one can compute in polynomial time in n, a
vector v € {—1, 1}", such that ||Av||,, < 4 y/nlogn.

Note, that this method might fail to find the best assignment.

16.3. Bibliographical Notes

There is a lot of nice work on discrepancy in geometric settings. See the books [c-dmr-01, Mat99].

16.4. From previous lectures

Theorem 16.4.1. Let Xi,..., X, be n independent random variables, such that P[X; = 1] = P[X; = —-1] = %,
fori=1,...,n. LetY = Y| X;. Then, for any A > 0, we have

P|Y > A| < exp(-A%/2n).
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